2016

Time: 3 hours

Full Marks: 70

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Answer from **all** the Groups are directed.

Group - A

(Compulsory)

- 1. Choose the correct answer of the following: 1x15=15
 - a) The number of elements in the power set P(S) where $S = \{1, \}$
 - 2, 3, 4) is:
 - i. 2
 - ii. 6
 - iii. 8
 - iv. 16
 - b) The set $A = \{1, 2, 4, 8\}$ with a divide by relation forms:
 - i. Equivalence relation
 - ii. Partial ordered set
 - iii. Totally ordered set
 - iv. Binary relation

- c) A relation R on the set A = {1, 2, 3, 4} is given by {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2)} is:
 - i. Symmetric
 - ii. Reflexive
 - iii. Transitive
 - iv. None of the above
- d) A binary tree T has n leaf nodes. The number of nodes of degree 2 in T is:
 - i. N 1
 - ii. N
 - iii. 2n
 - iv. Log₂n
- e) The number of different words form from the letters BANANA:
 - i. 300
 - ii. 60
 - iii. 720
 - iv. 100
- f) The number of functions from an m element set to n element set is:
 - i. m + n
 - ii. mⁿ
 - iii. n^{m}
 - iv. m*n
- g) $(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$ is a:
 - i. Contradiction
 - ii. Tautology
 - iii. Modus ponen

- iv. Indirect Method
- h) The value of (gof) (3) where $f : A \rightarrow B$, $g : B \rightarrow C$ defined by $f(a) = 2^a$ and $f(b) = b^2 + 2$ is:
 - i. 66
 - ii. 38
 - iii. 64
 - iv. None of the above
- i) The number of edges of a complete graph having n vertices is:
 - i. n + 1
 - ii. n(n + 1) / 2
 - iii. n(n-1)/2
 - iv. None of the above
- j) Chromatic number of a binary tree:
 - i. 2
 - ii. 3
 - iii. 4
 - iv. None of the above
- k) Degree of each node of binary tree is at most:
 - i. 1
 - ii. 2
 - iii. 3
 - iv. None of the above
- I) If 8 people are selected then at least how many of them are born on the same day of week?
 - i. 2

- ii. 3
- iii. 4
- iv. 5

m)Multiplicative inverse of 2 in mod 5 arithmetic is:

- i. 3
- ii. 4
- iii. 2
- iv. 5
- n) Two graph should be said to be isomorphic if:
 - i. Both have same number of vertex
 - ii. Both have same number of edges
 - iii. Equal number of vertices with a given degree
- o) Which one of the following is true for planar graph:
 - i. Every complete graph more than 4 vertices is planar graph
 - ii. The chromatic number of planar graph is 5
 - iii. Every bipartite graph is a planar graph
 - iv. All of the above

Group - B

Answer any **five** questions of the following: 4x5=20

2. Compute truth table for the following:

$$(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$$

- 3. Prove that the number of odd degree in a graph is always even.
- 4. Find the explicit formula for the sequence defined by $b_{n+1} = 2b_n + 1$ with initial condition $b_1 = 7$ and find b_4 .

- 5. Prove that cube root of unity forms Abelian group.
- 6. Write short notes on any **two** of the following:
 - a) Equivalence relation
 - b) Lattice
 - c) Growth of function
- 7. Prove the following by principle of induction:

$$\sum_{k=1}^{n} K^2 = \frac{n(n+1)(2n+1)}{6}$$

8. Write Depth First Search Algorithm.

Group - C

Answer any **five** questions of the following:

7x5 = 35

- 9. Let A = {1, 2, 3, 4} and let R = {(1, 2), (2, 3), (3, 4), (2, 1)}. Find transitive closure using Warshall's algorithm.
- 10. Using Dijkstra algorithm find shortest path from source A to all Vertex in the following figure:

- 11. Explain Kruskal's Algorithm to find the minimum spanning tree using suitable example.
- 12. Draw the binary tree using the following tree traversal (write each steps:

Preorder	Inorder
Α	D
В	В
D	F
Е	Е
F	Α
С	С
G	G

Find post order traversal from the binary tree.

- 13. Explain the difference between Homomorphism and Isomorphism with a suitable example.
- 14. What is Euler circuit? If G is a connected graph and every vertex has even degree, then prove that there is an Euler circuit in G.

*	<	

 $For more questions \ visit: \underline{https://www.guptatreepoint.com/marwari-college-previous-year-question-paper/processor (a) the processor of the processor (b) the processor of the processor (b) the processor (b)$